Series OSR/2

कोड नं. 56/2/1 Code No.

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **30** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

56/2/1 1 P.T.O.

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-संख्या 1 से 8 तक अति लघ्-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) प्रश्न-संख्या 9 से 18 तक लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न-संख्या 19 से 27 तक भी लघ्-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न-संख्या 28 से 30 तक दीर्घ-उत्तरीय प्रश्न हैं। प्रत्येक प्रश्न के लिए 5 अंक हैं।
- (vi) आवश्यकतानुसार लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमित **नहीं** है ।

General Instructions:

- (i) All questions are compulsory.
- (ii) Questions number 1 to 8 are very short-answer questions and carry 1 mark each.
- (iii) Questions number **9** to **18** are short-answer questions and carry **2** marks each.
- (iv) Questions number 19 to 27 are also short-answer questions and carry 3 marks each.
- (v) Questions number **28** to **30** are long-answer questions and carry **5** marks each.
- (vi) Use Log Tables, if necessary. Use of calculators is **not** allowed.
- 1. फेन प्लवन विधि में अयस्कों को सान्द्रित करने में संग्राहकों (collectors) का क्या कार्य होता है ?

What is the function of collectors in the froth floatation process for the concentration of ores?

2. भौतिक अधिशोषण होने में किस प्रकार के बल उत्तरदायी होते हैं ?

What type of forces are responsible for the occurrence of physisorption?

2

56/2/1

एकल N-N आबन्ध एकल P-P आबन्ध से दुर्बल क्यों होता है ? 3.

1

Why is the single N - N bond weaker than the single P - P bond?

निम्नलिखित संकर किस प्रकार की समावयवता (isomerism) प्रदर्शित करता है : 4.

1

 $[Co(NH_3)_6][Cr(CN)_6]$

What type of isomerism is shown by the following complex: $[Co(NH_3)_6][Cr(CN)_6]$

b.c.c. ऐकक सेल में परमाण त्रिज्या (r) और सेल के किनारे की लम्बाई (a) के आपसी **5.** सम्बन्ध को व्यक्त कीजिए।

1

Express the relationship between atomic radius (r) and the edge length (a) in the b.c.c. unit cell.

निम्नलिखित यौगिक का आई.यू.पी.ए.सी. (IUPAC) नाम लिखिए : 6. 1

Write the IUPAC name of the following compound:

$$\bigcirc$$
CHO

इन दोनों में से कौन-सा अधिक क्षारीय है और क्यों ? 7.

1

$$\mathrm{CH_{3}NH_{2}}$$
 अथवा $\mathrm{NH_{2}}$

Which of the two is more basic and why?

$$CH_3NH_2$$
 or NH_2

1

स्टार्च बनाने वाले α -ग्लूकोज़ के दो घटकों के नाम लिखिए ।

Name the two components of α -glucose which constitute starch.

8.

9. Ni(NO₃)₂ के एक विलयन का प्लैटिनम के इलेक्ट्रोडों के बीच 5·0 ऐम्पीयर विद्युत् धारा से 20 मिनट तक वैद्युत अपघटन किया गया । कैथोड पर निकैल का कितना द्रव्यमान निक्षेपित होगा ?

(दिया गया है : निकैल का परमाण द्रव्यमान = 58.7 g mol^{-1} , $1 \text{ F} = 96500 \text{ C mol}^{-1}$)

A solution of $Ni(NO_3)_2$ is electrolysed between platinum electrodes using a current of 5.0 ampere for 20 minutes. What mass of nickel will be deposited at the cathode?

(Given : At. Mass of Ni = 58.7 g mol^{-1} , $1 \text{ F} = 96500 \text{ C mol}^{-1}$)

- 10. अभिक्रिया की अर्ध आयु की परिभाषा लिखिए । निम्न के अर्ध आयु के लिये व्यंजक लिखिए :
 - (i) शून्य कोटि की अभिक्रिया
 - (ii) प्रथम कोटि की अभिक्रिया

Define half-life of a reaction. Write the expression of half-life for

- (i) zero order reaction and
- (ii) first order reaction.
- 11. सिल्वर अयस्क से सिल्वर के निष्कर्षण से सम्बद्ध रासायनिक अभिक्रियाएँ लिखिए।

 Write the chemical reactions involved in the extraction of silver from silver ore.
- 12. सल्फ़र के दो अति महत्त्वपूर्ण अपररूपों के नाम लिखिए । इन दोनों में से कौन-सा कक्ष ताप पर स्थायी होता है ? क्या होता है जब स्थायी रूप को $370~\mathrm{K}$ से ऊपर गरम किया जाता है ? 2

अथवा

- (i) सम्पर्क विधि से H_2SO_4 की प्राप्ति को अधिकतम बनाने के प्रतिबन्ध लिखिए ।
- (ii) जल में ${
 m H_2SO_4}$ के लिए ${
 m K_{a_2}} << {
 m K_{a_1}}$ क्यों है ?

4

56/2/1

2

2

Name the two most important allotropes of sulphur. Which one of the two is stable at room temperature? What happens when the stable form is heated above 370 K?

OR

- (i) Write the conditions to maximize the yield of H_2SO_4 by contact process.
- (ii) Why is $K_{a_2} << K_{a_1}$ for H_2SO_4 in water ?
- 13. निम्न समीकरणों को पूरा कीजिए:
 - (i) $2 \text{ MnO}_4^- + 5 \text{ S}^{2-} + 16 \text{ H}^+ \rightarrow$
 - (ii) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + 2\operatorname{OH}^- \to$

Complete the following equations:

- (i) $2 \text{ MnO}_4^- + 5 \text{ S}^{2-} + 16 \text{ H}^+ \rightarrow$
- (ii) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + 2\operatorname{OH}^- \to$
- 14. संकर $[C_0F_6]^{3-}$ के लिये संकरण अवस्था, आकृति और IUPAC नाम लिखिए । 2 (C_0 का परमाण् क्रमांक = 27)

Write the state of hybridization, shape and IUPAC name of the complex $[CoF_6]^{3-}$. (Atomic no. of Co = 27)

- 15. निम्न के लिए रासायनिक समीकरण लिखिए:
 - (i) जब एथिल क्लोराइड की जलीय KOH से अभिक्रिया की जाती है।
 - (ii) जब निर्जल $AlCl_3$ की उपस्थिति में क्लोरोबेन्ज़ीन की CH_3COCl से अभिक्रिया की जाती है ।

Write chemical equations when

- (i) ethyl chloride is treated with aqueous KOH.
- (ii) chlorobenzene is treated with $\mathrm{CH_3COCl}$ in presence of anhydrous $\mathrm{AlCl_3}$.

56/2/1 5 P.T.O.

2

निम्न युग्मों से किस ऐल्किल हेलाइड की आप ${
m S_N}2$ क्रियाविधि द्वारा अधिक तीव्रता **16.** (a) से अभिक्रिया करने की आशा करेंगे और क्यों ?

$$\begin{array}{ccc} \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH} - \mathrm{CH_3} & & \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{Br} \\ & | & \\ & \mathrm{Br} & & \end{array}$$

- $S_N 1$ अभिक्रियाओं में रेसिमीकरण हो जाता है । क्यों ? (b)
- (a) Which alkyl halide from the following pairs would you expect to react more rapidly by an S_N2 mechanism and why?

$$\begin{array}{ccc} \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH} - \mathrm{CH_3} & & \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{Br} \\ & | & \\ & \mathrm{Br} & & \end{array}$$

- Racemisation occurs in $S_N 1$ reactions. Why? (b)
- निम्न अभिक्रिया की क्रियाविधि लिखिए: 17.

$$CH_3CH_2OH \xrightarrow{\quad HBr\quad} CH_3CH_2Br + H_2O$$

Write the mechanism of the following reaction:

$$CH_3CH_2OH \xrightarrow{HBr} CH_3CH_2Br + H_2O$$

- निम्न अभिक्रियाओं में प्रयुक्त अभिकारकों के नाम लिखिए : 18.
 - फ़ीनॉल के ब्रोमीनेशन से 2,4,6-ट्राईब्रोमोफ़ीनॉल बनाना (i)
 - ब्यूटेन-2-ओन से ब्यूटेन-2-ओल बनाना (ii)
 - ऐनिसोल का फ्रीडेल क्राफ़्टस ऐल्किलीकरण (iii)
 - प्राथमिक ऐल्कोहॉल के ऑक्सीकरण द्वारा कार्बोक्सिलिक अम्ल बनाना (iv)

Name the reagents used in the following reactions:

- (i) Bromination of phenol to 2,4,6-tribromophenol
- (ii) Butan-2-one to Butan-2-ol
- (iii) Friedel – Crafts alkylation of anisole
- (iv)Oxidation of primary alcohol to carboxylic acid

56/2/1 6 2

2

- 19. (i) KCl किस प्रकार का रससमीकरणिमतीय दोष दिखाता है और क्यों ?
 - (ii) सिलिकॉन को As से डोपित करने पर किस प्रकार का अर्धचालक बनता है ?
 - (iii) निम्न में से कौन-सा आण्विक ठोस का उदाहरण है : ${
 m CO}_2$ अथवा ${
 m SiO}_2$
 - (iv) इनमें से कौन-सा अधिक अच्छे चुम्बक बनाएगा, फेरोचुम्बकीय पदार्थ अथवा फेरीचुम्बकीय पदार्थ ?
 - (i) What type of stoichiometric defect is shown by KCl and why?
 - (ii) What type of semiconductor is formed when silicon is doped with As?
 - (iii) Which one of the following is an example of molecular solid : $CO_2 \ or \ SiO_2$
 - (iv) What type of substances would make better magnets, ferromagnetic or ferrimagnetic?
- **20.** (i) साधारण सेल की तुलना में $H_2 O_2$ ईंधन सेल के दो लाभ लिखिए ।
 - $\begin{array}{ll} \hbox{(ii)} & \hbox{ =} $ \mbox{ $\rm flip} \mbox{ $\rm iii$}) & \hbox{ =} $ \mbox{ $\rm flip} \mbox{ $\rm iii$}) & \hbox{ =} $ \mbox{ $\rm flip} \mbox{ $\rm iii$}) & \hbox{ =} $ \mbox{ $\rm flip} \mbox{ $\rm iii$}) & \hbox{ =} $ \mbox{ $\rm iii$}) & \hbox{$
 - (i) Write two advantages of $H_2 O_2$ fuel cell over ordinary cell.
 - (ii) Equilibrium constant (K_c) for the given cell reaction is 10. Calculate $E_{\rm cell}^{\,o}$.

$$A(s) + B^{2+}(aq) \stackrel{\longrightarrow}{\longleftarrow} A^{2+}(aq) + B(s)$$

56/2/1 7 P.T.O.

3

स्थिर आयतन अवस्था में SO₂Cl₂ के प्रथम कोटि के ऊष्मीय अपघटन में निम्न आंकड़े प्राप्त 21. हए थे :

$$SO_2Cl_2(g) {\:\longrightarrow\:} SO_2(g) + Cl_2(g)$$

प्रयोग	समय/s ⁻¹	सकल दाब/atm
1	0	0.4
2	100	0.7

वेग स्थिरांक परिकलित कीजिए ।

(दिया गया है : $\log 4 = 0.6021$, $\log 2 = 0.3010$)

The following data were obtained during the first order thermal decomposition of SO₂Cl₂ at a constant volume :

$$SO_2Cl_2(g) \longrightarrow SO_2(g) + Cl_2(g)$$

Experiment	Time/s ⁻¹	Total pressure/atm
1	0	0.4
2	100	0.7

Calculate the rate constant.

(Given: $\log 4 = 0.6021$, $\log 2 = 0.3010$)

- ठोसों पर गैसों के अधिशोषण के लिए फ्रॉयन्डलिक अधिशोषण समतापी 22. (a) (isotherm) के लिए एक समीकरण के रूप में व्यंजक लिखिए।
 - मक्खन के परिक्षिप्त प्रावस्था और परिक्षेप माध्यम क्या हैं ? (b)
 - समृद्र और नदी के मिलने के स्थान पर डेल्टा बनता है। क्यों ? (c)
 - Write the expression for the Freundlich adsorption isotherm for (a) the adsorption of gases on solids, in the form of an equation.
 - (b) What are the dispersed phase and dispersion medium of butter?
 - (c) A delta is formed at the meeting place of sea and river water. Why?

56/2/1 8 3

- 23. (a) लैन्थेनॉयड कौन-कौन सी विभिन्न उपचायी अवस्थाएँ दिखाते हैं ?
 - (b) संक्रमण तत्त्वों की दो विशेषताएँ लिखिए।
 - (c) 3d-ब्लॉक के तत्त्वों में से किन-किन को संक्रमण तत्त्व नहीं माना जा सकता है और क्यों ?

3

अथवा

निम्न के लिए उपयुक्त कारण लिखिए:

- (a) अपनी +3 ऑक्सीकरण अवस्था को प्राप्त करने के लिए ${\rm Fe}^{2+}$ यौगिकों की तुलना में ${\rm Mn}^{2+}$ यौगिक अधिक स्थायी होते हैं।
- (b) Sc (Z = 21) से Zn (Z = 30) तक के 3d सीरीज़ के तत्त्वों में से Zn की परमाणुकरण की ऐन्थैल्पी सबसे कम होती है।
- (c) जलीय विलयन में \mathbf{Sc}^{3+} रंगहीन होता है जबिक \mathbf{Ti}^{3+} रंगीन होता है ।
- (a) What are the different oxidation states exhibited by the lanthanoids?
- (b) Write two characteristics of the transition elements.
- (c) Which of the 3d-block elements may not be regarded as the transition elements and why?

OR

Assign suitable reasons for the following:

- (a) The Mn^{2+} compounds are more stable than Fe^{2+} towards oxidation to their +3 state.
- (b) In the 3d series from Sc (Z = 21) to Zn (Z = 30), the enthalpy of atomization of Zn is the lowest.
- (c) Sc³⁺ is colourless in aqueous solution whereas Ti³⁺ is coloured.

56/2/1 9 P.T.O.

3

3

(i)
$$CH_3Br \xrightarrow{KCN} A \xrightarrow{LiAlH_4} B \xrightarrow{HNO_2} C$$

(ii)
$$CH_3COOH \xrightarrow{NH_3} A \xrightarrow{Br_2 + KOH} B \xrightarrow{CHCl_3 + NaOH} C$$

Give the structures of A, B and C in the following reactions:

(i)
$$CH_3Br \xrightarrow{KCN} A \xrightarrow{LiAlH_4} B \xrightarrow{HNO_2} C$$

(ii)
$$CH_3COOH \xrightarrow{NH_3} A \xrightarrow{Br_2 + KOH} B \xrightarrow{CHCl_3 + NaOH} C$$

25. निम्न पदों की परिभाषाएँ लिखिए :

- (a) ऐनोमर
- (b) प्रोटीनों का विकृतीकरण
- (c) आवश्यक ऐमीनो अम्ल

Define the following terms:

- (a) Anomers
- (b) Denaturation of proteins
- (c) Essential amino acids
- 26. (i) ऐन्टीहिस्टामीन की एक उदाहरण सहित परिभाषा लिखिए।
 - (ii) निम्न औषधियों में से कौन-सी प्रतिजैविक है : मॉर्फीन, इक्वानिल, क्लोरऐम्फ़ैनिकोल, ऐस्पिरिन ।
 - (iii) ऐस्पार्टेम का उपयोग ठंडे भोजन और पेय पदार्थों तक सीमित क्यों होता है ?
 - (i) Define Antihistamine with an example.
 - (ii) Which one of the following drugs is an antibiotic:

 Morphine, Equanil, Chloramphenicol, Aspirin.
 - (iii) Why is use of aspartame limited to cold food and drink?

56/2/1

27. प्लास्टिक के थैलों पर प्रतिबन्ध लग जाने के उपरान्त, एक स्कूल के छात्रों ने निर्णय लिया कि वह लोगों को वातावरण और यमुना नदी पर प्लास्टिक के थैलों के हानिकारक प्रभावों से सूचित करेंगे । बात को अधिक प्रभावी बनाने के लिए, उन्होंने दूसरे स्कूलों के साथ मिलकर एक रैली रची और सिब्ज़ियाँ बेचने वालों, दुकानदारों और डिपार्टमेन्टल स्टोरों में काग़ज़ के थैले बाँटे । सभी छात्रों ने प्रण किया कि वे यमुना नदी को बचाने के लिए भविष्य में पॉलीथीन के थैलों का प्रयोग नहीं करेंगे ।

उपर्युक्त लेखांश को पढ़कर निम्न प्रश्नों के उत्तर दीजिए :

3

- (i) छात्रों ने किन मूल्यों को दर्शाया है ?
- (ii) जैव-निम्नीकरणीय बहुलक क्या होते हैं ? एक उदाहरण दीजिए ।
- (iii) क्या पॉलीथीन एक सम (होमो) बहुलक है अथवा सह (co-) बहुलक है ?

After the ban on plastic bags, students of one school decided to create awareness among the people about the harmful effects of plastic bags on the environment and the Yamuna river. To make it more impactful, they organized a rally by joining hands with other schools and distributed paper bags to vegetable vendors, shopkeepers and departmental stores. All students pledged not to use polythene bags in future to save the Yamuna river.

After reading the above passage, answer the following questions:

- (i) What values are shown by the students?
- (ii) What are biodegradable polymers? Give one example.
- (iii) Is polythene a homopolymer or copolymer?

- वाष्पशील अवयवों वाले विलयन के लिए राउल्ट नियम लिखिए । सभी सान्द्रणों और 28. (a) तापक्रमों पर राउल्ट नियम अनुसार रहने वाले विलयन का नाम लिखिए। 2 200 g जल में 10 g CaCl₂ घोलने से प्राप्त हुए विलयन के लिए क्वथनांक उन्नयन (b) को परिकलित कीजिए । (जल के लिए $K_b = 0.512 \text{ K kg mol}^{-1}$, $CaCl_2$ का मोलर द्रव्यमान = 111 g mol⁻¹) 3 अथवा निम्न पदों की परिभाषाएँ लिखिए: (a) 3 स्थिरक्वाथी (ऐज़ियोट्रोप) (i) परासरणी (ओसमॉटिक) दाब (ii) अणुसंख्य (कोलिगेटिव) गुणधर्म (iii) $9.8\% \ (\text{w/w}) \ \text{H}_2 \text{SO}_4$ के विलयन की मोलरता परिकलित कीजिए यदि इस विलयन (b) का घनत्व 1.02 g ml^{-1} हो । $(\text{H}_{9}\text{SO}_{4}$ का मोलर द्रव्यमान = $98 \text{ g mol}^{-1})$ 2(a) State Raoult's law for a solution containing volatile components. Name the solution which follows Raoult's law at all concentrations and temperatures. (b) Calculate the boiling point elevation for a solution prepared by adding 10 g of CaCl₂ to 200 g of water. (K_b for water = $0.512~\rm K~kg~mol^{-1},~Molar~mass~of~CaCl_2 = 111~g~mol^{-1})$ OR (a) Define the following terms: (i) Azeotrope (ii) Osmotic pressure (iii) Colligative properties
 - (b) Calculate the molarity of 9.8% (w/w) solution of H_2SO_4 if the density of the solution is 1.02 g ml⁻¹. (Molar mass of $H_2SO_4 = 98$ g mol⁻¹)

56/2/1 12

29.	(a)		के कारण बताइए :	3
		(i)	+ 5 अवस्था में Bi प्रबल उपचायक होता है।	
		(ii)	PCl_5 तो जाना जाता है परन्तु NCl_5 नहीं ।	
		(iii)	लौह HCl में घुलकर FeCl_2 बनाता है, FeCl_3 नहीं ।	
	(b)		की संरचनाएँ बनाइए :	2
		(i)	XeOF_4	
		(ii)	HClO_4	
		C	अथवा	_
	(a)	निम्न व	की संरचनाएँ बनाइए :	2
		(i)	$\mathrm{H_2S_2O_8}$	
		(ii)	लाल P_4	
	(b)	निम्न व	के कारण लिखिए :	3
		(i)	वाष्प अवस्था में गन्धक (सल्फर) अनुचुम्बकत्व प्रदर्शित करता है।	
		(ii)	ज़ीनॉन से भिन्न, हीलियम का कोई स्पष्ट रासायनिक यौगिक ज्ञात नह है।	î
		(iii)	$ m H_3PO_3$ से $ m H_3PO_2$ एक अधिक प्रबल अपचायक है ।	
	(a)	Accou	unt for the following:	
		(i)	Bi is a strong oxidizing agent in the + 5 state.	
		(ii)	PCl ₅ is known but NCl ₅ is not known.	
		(iii)	Iron dissolves in HCl to form $FeCl_2$ and not $FeCl_3$.	
	(b)	Draw	the structures of the following:	
		(i)	XeOF_4	
		(ii)	HClO_4	
			OR	
	(a)	Draw	the structures of the following:	
		(i)	$\mathrm{H_{2}S_{2}O_{8}}$	
		(ii)	$\operatorname{Red} \operatorname{P}_4$	
56/2/1			13	P.T.O.

Get More Learning Materials Here :

(b) Account for the following: Sulphur in vapour state exhibits paramagnetism. (i) (ii) Unlike xenon, no distinct chemical compound of helium is known. H₃PO₂ is a stronger reducing agent than H₃PO₃. (iii) ऐथेनैल के निम्न अभिकारकों के साथ अभिक्रिया करने पर बने उत्पादों को लिखिए : **30.** (a) 3 $\mathrm{CH_3MgBr}$ से और फिर $\mathrm{H_3O^+}$ से (i) Zn-Hg/सान्द्र HCl से (ii) तन् NaOH की उपस्थिति में C₆H₅CHO से (iii) निम्न यौगिक युग्मों में परस्पर भेद करने के लिए सरल रासायनिक परीक्षण दीजिए : (b) 2 बेन्जोइक अम्ल और एथिल बेन्जोएट (i) प्रोपेनैल और ब्यूटेन-2-ओन (ii) अथवा निम्न के कारण लिखिए: (a) 2 HCN के साथ अभिक्रिया करने में CH3COCH3 से CH3CHO अधिक अभिक्रियाशील होता है। सेमीकार्बेज़ाइड $(H_2NNHCONH_2)$ में दो $-NH_2$ ग्रुप होते हैं । फिर भी (ii) सेमीकार्बाज़ोन बनाने में केवल एक - NH2 ग्रुप क्रियाकारी होता है। निम्न नामधारी अभिक्रियाओं के लिए रासायनिक समीकरण लिखिए : (b) 3 रोज़ेनमुन्ड अभिक्रिया (i) हेल-वोलाई-ज़ेलिन्स्की अभिक्रिया (ii) (iii) कैनीज़ारो अभिक्रिया Write the products formed when ethanal reacts with the following (a) reagents: CH₃MgBr and then H₃O⁺ (i) (ii) Zn-Hg/conc. HCl C₆H₅CHO in the presence of dilute NaOH (iii)

56/2/1 14

- (b) Give simple chemical tests to distinguish between the following pairs of compounds:
 - (i) Benzoic acid and Ethyl benzoate
 - (ii) Propanal and Butan-2-one

OR

- (a) Account for the following:
 - (i) CH₃CHO is more reactive than CH₃COCH₃ towards reaction with HCN.
 - (ii) There are two $-NH_2$ groups in semicarbazide $(H_2NNHCONH_2)$. However, only one is involved in the formation of semicarbazone.
- (b) Write the chemical equation to illustrate each of the following name reactions:
 - (i) Rosenmund reduction
 - (ii) Hell-Volhard-Zelinsky reaction
 - (iii) Cannizzaro reaction

56/2/1 15 2,800

MARKING SCHEME Chemistry – 2014 FOREIGN – SET (56/2/1)

 Collectors enhance non-wettability of the mineral/ore particles van der Waals forces Because of high inter-electronic repulsion of non bonding electrons owing to the sma 	1 I 1
3 Because of high inter-electronic repulsion of non bonding electrons owing to the sma	1 1
bond length / atomic size	' 1
4 Coordination isomerism	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
6 2 – hydroxybenzaldehyde	1
7 CH ₃ – NH ₂ ,because of the electron releasing (+I effect) tendency of methyl group	1/2+1/2
8 Amylose and amylopectin	1
9 m= z l t	
$m = \frac{\text{atomic mass}}{\text{n x F}} x I x t$	1/2
$ \begin{array}{c c} & n \times F \\ 58.7 a mol^{-1} \\ \end{array} $	
$m = \frac{58.7g \ mol^{-1}}{2 \times 96500 \ C \ mol^{-1}} \times 5 \ A \times 1200 \ s$	1/2
m= 1.825 g (or any other suitable method)	1
10 Half-life of a reaction is the time in which the concentration of a reactant is reduced t	1
half of its initial concentration.	
(i) (ii)	
[R] ₀ 0.693	1/2+1/2
$t_{1/2} = \frac{[R]_0}{2k} \qquad \qquad t_{1/2} = \frac{0.693}{k}$	
11 $4Ag + 8 CN^{-} + 2H_2O + O_2 \rightarrow 4 [Ag(CN)_2]^{-} + 4 OH^{-}$	1
$2[Ag(CN)_2]^- + Zn \rightarrow [Zn(CN)_4]^{-2} + 2Ag$	1
Or	
$Ag_2S + 4NaCN \rightarrow 2 Na[Ag(CN)_2] + Na_2S$	
$2Na[Ag(CN)_2] + Zn \rightarrow Na_2 [Zn(CN)_4] + 2Ag$	
(balancing of equation is not necessary)	
12 Rhombic and Monoclinic	1
Rhombic Sulphur	1/2
Rhombic sulphur changes to monoclinic sulphur	1/2
OR	
a) High pressure and low temperature	1
b) Because ionization of HSO-4 is difficult / removal of proton from negatively	1
charged HSO-4 is difficult.	
13 $5S^{2-} + 2MnO_4^- + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 5S$	1
	1
$\text{Cr}_2\text{O}_7^{2-} + 2 \text{ OH}^- \rightarrow 2 \text{ CrO}_4^{2-} + \text{H}_2\text{O}$	
14 Hydridization: sp ³ d ² shape– octahedral	1/2+1/2
IUPAC – hexafluoridocobaltate(III)	1

15 (i) $CH_3 CH_2 - CI + KOH (aq) \rightarrow CH_3 CH_2 - OH + KCI$ 1 (ii) CI CI CI $CH_3 CH_2 - CI - Anhyd. AICI_3$ CI $CH_3 - CH_2 - CI$ CI CI $CH_3 - CH_2 - CI$ $CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2$
1 16 a) 1-Bromobutane / CH ₃ CH ₂ CH ₂ CH ₂ Br Because it is a primary alkyl halide b) Because carbocation formed in S _N 1 reaction is sp ² hybridized and planar. 17 HBr \rightarrow H ⁺ + Br ⁻ CH ₃ - CH ₂ - O - H + H ⁺ \rightarrow CH ₃ - CH ₂ - O - H CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ + H ₂ O CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ + H ₂ O CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ + H ₂ O 1/2 CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ - D - H Or 1
1 16 a) 1-Bromobutane / CH ₃ CH ₂ CH ₂ CH ₂ Br Because it is a primary alkyl halide b) Because carbocation formed in S _N 1 reaction is sp ² hybridized and planar. 17 HBr \rightarrow H ⁺ + Br ⁻ CH ₃ - CH ₂ - O - H + H ⁺ \rightarrow CH ₃ - CH ₂ - O - H CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ + H ₂ O CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ + H ₂ O CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ + H ₂ O 1/2 CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ - D - H Or 1
1 16 a) 1-Bromobutane / CH ₃ CH ₂ CH ₂ CH ₂ Br Because it is a primary alkyl halide b) Because carbocation formed in S _N 1 reaction is sp ² hybridized and planar. 17 HBr \rightarrow H ⁺ + Br ⁻ CH ₃ - CH ₂ - O - H + H ⁺ \rightarrow CH ₃ - CH ₂ - O - H CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ + H ₂ O CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ + H ₂ O CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ + H ₂ O 1/2 CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ - D - H Or 1
16 a) 1-Bromobutane / CH ₃ CH ₂ CH ₂ CH ₂ Br Because it is a primary alkyl halide b) Because carbocation formed in S _N 1 reaction is sp ² hybridized and planar. 17 HBr → H ⁺ + Br CH ₃ - CH ₂ - O - H + H ⁺ → CH ₃ - CH ₂ - O - H CH ₃ - CH ₂ - O - H → CH ₃ - CH ₂ + H ₂ O CH ₃ - CH ₂ - O - H → CH ₃ - CH ₂ + H ₂ O Or 1
16 a) 1-Bromobutane / CH ₃ CH ₂ CH ₂ CH ₂ Br Because it is a primary alkyl halide b) Because carbocation formed in S _N 1 reaction is sp ² hybridized and planar. 17 HBr \rightarrow H ⁺ + Br $CH_3 - CH_2 - O - H + H^+ \rightarrow CH_3 - CH_2 - O - H$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 + H_2O$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 + H_2O$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 + H_2O$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 + H_2O$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 + H_2O$ I_2 I_3 I_4 I_4 I_5 I_5 I_6 I_7 I_8 I
Because it is a primary alkyl halide b) Because carbocation formed in S_N1 reaction is sp^2 hybridized and planar. 1 17 HBr \rightarrow H ⁺ + Br CH ₃ - CH ₂ - O - H + H ⁺ \rightarrow CH ₃ - CH ₂ - O - H CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ + H ₂ O CH ₃ - CH ₂ - O - H \rightarrow CH ₃ - CH ₂ + H ₂ O Or 1 Or
b) Because carbocation formed in S_N1 reaction is sp^2 hybridized and planar. 1 17 $HBr \rightarrow H^+ + Br$ $CH_3 - CH_2 - O - H + H^+ \rightarrow CH_3 - CH_2 - O - H$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 + H_2O$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 + H_2O$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 - H_2O$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 - H_2O$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 - H_2O$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 - H_2O$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 - H_2O$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 - H_2O$ $CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 - H_2O$
$CH_{3} - CH_{2} - O - H + H^{+} \rightarrow CH_{3} - CH_{2} - O - H$ $CH_{3} - CH_{2} - O - H \rightarrow CH_{3} - CH_{2} + H_{2}O$ $CH_{3} - CH_{2} - O - H \rightarrow CH_{3} - CH_{2} + H_{2}O$ $CH_{3} - CH_{2} - O - H \rightarrow CH_{3} - CH_{2} - Br$ Or Or 1
$CH_{3} - CH_{2} - O - H \longrightarrow CH_{3} - CH_{2} + H_{2}O$ $CH_{3} - CH_{2} - O - H \longrightarrow CH_{3} - CH_{2} + H_{2}O$ $CH_{3} - CH_{2} - O - H \longrightarrow CH_{3} - CH_{2} - Br$ Or 1
$CH_{3} - CH_{2} - O - H \longrightarrow CH_{3} - CH_{2} + H_{2}O$ $CH_{3} - CH_{2} - O - H \longrightarrow CH_{3} - CH_{2} + H_{2}O$ $CH_{3} - CH_{2} - O - H \longrightarrow CH_{3} - CH_{2} - Br$ Or 1
$CH_{3} - CH_{2} - O - H \longrightarrow CH_{3} - CH_{2} + H_{2}O$ $CH_{3} - CH_{2} - O - H \longrightarrow CH_{3} - CH_{2} + H_{2}O$ $CH_{3} - CH_{2} - O - H \longrightarrow CH_{3} - CH_{2} - Br$ Or 1
$CH_{3}^{+}CH_{2} \xrightarrow{Br^{-}} CH_{3}^{-}CH_{2} -Br$ Or 1
$CH_{3}^{+}CH_{2} \xrightarrow{Br^{-}} CH_{3}^{-}CH_{2}^{-}Br$ Or 1
$CH_{3}^{+}CH_{2} \xrightarrow{Br^{-}} CH_{3}^{-}CH_{2}^{-}Br$ Or 1
$CH_{3}^{+}CH_{2} \xrightarrow{Br^{-}} CH_{3}^{-}CH_{2}^{-}Br$ Or 1
Or 1
Or 1
Or 1
$Br + CH - OH \longrightarrow Br - CH_a + H_aO$
Br + CH2 - OH2 + OH2 - OH2 + H2O R (values B CH)
R (where $R = -CH_3$)
18 (i) Br_2 / H_2O or aq. Br_2
(ii) LiAlH ₄ or NaBH ₄ or H ₂ / Ni (or any other)
(iii) R − Cl and anhyd . Al Cl ₃
(iv) Acidic or alkaline KMnO ₄ , K ₂ Cr ₂ O ₇ (acidic)
19 (i) Schottky defect, due to similar size of K ⁺ and Cl ⁻ ion ½ +½
(ii) n-type
(iii) CO ₂ (iv) Ferromagnetic ½
20 a)
(i) The fuel cell runs continuously as long as the reactants are supplied
(ii) Highly efficient ½
(iii) Pollution free ½
(any two)

	$\log 10 = \frac{2xE^{0} \text{cell}}{0.059}$ $E^{0}_{\text{cell}} = \frac{0.059}{2} = 0.0295 \text{ V}$	[log 10 = 1]	1/2
			1
21	$\mathrm{SO}_2\mathrm{Cl}_2$	\rightarrow SO ₂ + Cl ₂	
	At $t = 0s$ 0.4 atm	0 atm 0 atm	
	At $t = 100s$ $(0.4 - x)$ atm	x atm x atm	
	Pt = 0.4 - x + x + x		
	Pt = 0.4 + x		
	0.7 = 0.4 + x		
	x = 0.3		
	$k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$		1
	$k = \frac{2.303}{t} \log \frac{0.4}{0.8 \cdot 0.7}$		1
	$k = \frac{2.303}{100} \log \frac{0.4}{0.1}$		
	$k = \frac{2.303}{100} \times 0.6021 = 1.39 \times 10^{-2} \text{ s}^{-1}$		1
22	a) $\frac{x}{m} = k p^{1/n}$ or $\log (x/m) = \log k$	+ 1/n log p	1
	b) Dispersed phase = liquid	Dispersion medium = Solid	1
22	c) Because of coagulation of colloidal particles		
23	a) +3 +2 +4 oxidation statesb) Transition elements		1
	(i) Form coloured compo	unds	
	(ii) Form complexes		
	(iii) Act as catalysts		
	(iv) Paramagnetic		
	(v) Form alloys		
	(vi) Form interstitial comp	ounds (any two)	1/2+1/2
	Or any other c) Zn, because of fully filled d orb	nitals	1/2+1/2
	c) Zn, because of fully filled d ork	OR	/2⊤/2
23	a) Because of stable half fille		1
	b) Because Zn has no unpaire	` ,	1
	•	f one unpaired electron in Ti ³⁺ whereas there is no	1
	unpaired electron in Sc+3		
24	• •	$CH_3CH_2NH_2$ $C = CH_3CH_2OH$	1/2+1/2+1/2
		CH_3NH_2 $C = CH_3NC$	1/2+1/2+1/2
25	(i) Anomers – are the isomer	s which differ only in the configuration of hydroxyl	1

 α and β forms of glucose are called anomers (ii) Denaturation of proteins – when native protein is subjected to physical or chemical change, it loses its biological activity and is called denaturation. (iii) Essential amino acids are the amino acids required in our diet for the growth of the body / which are not synthesized by our body and obtained through diet. 26 (i) The drugs which are used to prevent the interaction of histamine with the receptors present in the stomach wall. Eg. Cimetidine / Ranitidine / Dimetapp (or any other)
chemical change, it loses its biological activity and is called denaturation. (iii) Essential amino acids are the amino acids required in our diet for the growth of the body / which are not synthesized by our body and obtained through diet. 26 (i) The drugs which are used to prevent the interaction of histamine with the receptors present in the stomach wall. Eg. Cimetidine / Ranitidine / Dimetapp (or any other) (ii) Chloramphenicol (iii) Because it is unstable at cooking temperature 27 (i) Concern towards environment / caring / socially aware / team work. (atleast two values) (ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV , Nylon -2-nylon- 6/ any natural polymer (iii) Homo polymer 28 (i) Raoult's law: state that for a solution containing volatile components, the
(iii) Essential amino acids are the amino acids required in our diet for the growth of the body / which are not synthesized by our body and obtained through diet. 26 (i) The drugs which are used to prevent the interaction of histamine with the receptors present in the stomach wall. Eg. Cimetidine / Ranitidine / Dimetapp (or any other) (ii) Chloramphenicol 1 (iii) Because it is unstable at cooking temperature 1 27 (i) Concern towards environment / caring / socially aware / team work. (atleast two values) (ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV ½+½ , Nylon -2-nylon- 6/ any natural polymer (iii) Homo polymer 1 28 (i) Raoult's law: state that for a solution containing volatile components, the 1
of the body / which are not synthesized by our body and obtained through diet. 26 (i) The drugs which are used to prevent the interaction of histamine with the receptors present in the stomach wall. Eg. Cimetidine / Ranitidine / Dimetapp (or any other) (ii) Chloramphenicol (iii) Because it is unstable at cooking temperature 27 (i) Concern towards environment / caring / socially aware / team work. (atleast two values) (ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV Nylon -2-nylon- 6/ any natural polymer (iii) Homo polymer 1 28 (i) Raoult's law: state that for a solution containing volatile components, the
diet. 26 (i) The drugs which are used to prevent the interaction of histamine with the receptors present in the stomach wall. Eg. Cimetidine / Ranitidine / Dimetapp (or any other) (ii) Chloramphenicol (iii) Because it is unstable at cooking temperature 27 (i) Concern towards environment / caring / socially aware / team work. (atleast two values) (ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV Nylon -2-nylon- 6/ any natural polymer (iii) Homo polymer 1 28 (i) Raoult's law: state that for a solution containing volatile components, the
receptors present in the stomach wall. Eg. Cimetidine / Ranitidine / Dimetapp (or any other) (ii) Chloramphenicol 1 (iii) Because it is unstable at cooking temperature 1 27 (i) Concern towards environment / caring / socially aware / team work. (atleast two values) (ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV ½+½ , Nylon -2-nylon- 6/ any natural polymer (iii) Homo polymer 1 28 (i) Raoult's law: state that for a solution containing volatile components, the
Dimetapp (or any other) (ii) Chloramphenicol (iii) Because it is unstable at cooking temperature 27 (i) Concern towards environment / caring / socially aware / team work. (atleast two values) (ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV , Nylon -2-nylon- 6/ any natural polymer (iii) Homo polymer 28 (i) Raoult's law: state that for a solution containing volatile components, the
(ii) Chloramphenicol (iii) Because it is unstable at cooking temperature 27 (i) Concern towards environment / caring / socially aware / team work. (atleast two values) (ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV 72+1/2 72, Nylon -2-nylon- 6/ any natural polymer (iii) Homo polymer 28 (i) Raoult's law: state that for a solution containing volatile components, the
(iii) Because it is unstable at cooking temperature (i) Concern towards environment / caring / socially aware / team work. (atleast two values) (ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV , Nylon -2-nylon- 6/ any natural polymer (iii) Homo polymer 1 Raoult's law: state that for a solution containing volatile components, the
(i) Concern towards environment / caring / socially aware / team work. (atleast two values) (ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV , Nylon -2-nylon- 6/ any natural polymer (iii) Homo polymer 1 Raoult's law: state that for a solution containing volatile components, the
two values) (ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV , Nylon -2-nylon- 6/ any natural polymer (iii) Homo polymer 1 28 (i) Raoult's law: state that for a solution containing volatile components, the
(ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV , Nylon -2-nylon- 6/ any natural polymer (iii) Homo polymer 1 Raoult's law: state that for a solution containing volatile components, the
, Nylon -2-nylon- 6/ any natural polymer (iii) Homo polymer 1 28 (i) Raoult's law: state that for a solution containing volatile components, the
(iii) Homo polymer 1 28 (i) Raoult's law: state that for a solution containing volatile components, the 1
(iii) Homo polymer 1 28 (i) Raoult's law: state that for a solution containing volatile components, the 1
28 (i) Raoult's law: state that for a solution containing volatile components, the 1
partial vapour pressure of each component is directly proportional to its
mole fraction.
Ideal solution. 1
(ii) $\Lambda T_{c} = i K_{c} \sqrt{W \operatorname{cacl}_{2}} \sqrt{1000}$
$\begin{array}{ccc} \text{(II)} & \Delta \text{I}_{b} - \text{I} \text{K}_{b} \text{A}_{\text{M}} \text{Cacl}_{2} & \text{A}_{\text{W}} \text{H}_{2} \text{O} \end{array}$
= 3x0.512 K kg mol ⁻¹ x $\frac{10g}{111 \text{ amol}^{-1}}$ x $\frac{1000}{200 \text{ kg}}$
$= 0.69 \text{K or } 0.69 ^{\circ} \text{C}$
OR
28 a)
(i) Azeotrope is a liquid mixture which boils at constant temperature with
constant composition. (ii) Osmotic pressure : is the pressure applied on the solution side to stop the 1
flow of solvent across the semi permeable membrane from lower
concentration of the solution to higher concentration.
(iii) Colligative properties : are the properties of solution which depend upon the 1
no of moles of solute or concentration of solute and not on the nature of
solute.
b) $M = \frac{n_B}{V(L)} = \frac{w_B}{m_B} \times \frac{1000}{V(mL)}$ (B \rightarrow Solute)
9.8 g $1000 1.2 3$
$M = \frac{M}{98 \ g \ mol^{-1}} \times \frac{100}{100} \times 1.02$ $M = 1.02M$
29 a) (i) Because Bi is more stable in +3 oxidation state.
(ii) Because of the availability to d orbital in P which is not in N/ nitrogen cannot

	a) (i) (ii)	1+1
29	OR a) (i)	1
	(ii) P P P P P P P P P P P P P P P P P P	1
	 b) (i) Because of the presence of two unpaired electrons . (ii) Because of high ionization enthalpy of He. (iii) Because of the presence of two P-H bonds in H₃PO₂ whereas in H₃PO₃ one P-H bond is present. 	1 1
30	a) (i) CH ₃ -CHO CH ₃ MgBr CH ₃ CH(CH ₃)- OMgBr H ₃ O ⁺ CH ₃ CH(OH)- CH ₃	1
	(ii) CH_3CHO $Zn-Hg$ CH_3-CH_3 $Conc HCI$ (iii) $C_6H_5CHO + CH_3-CHO$ $dil NaOH$ $C_6H_5CH(OH) CH_2CHO$ (Award full marks even if only products are given)	1
	b) (i) Add NaHCO ₃ , benzoic acid will give brisk effervescence whereas ethyl benzoate will not give this test. (or any other test) (ii) Add tollen's reagent, propanal will give silver mirror whereas Butan-2-one will not give this test. (or any other test)	1
	OR	

30	a) (i) Because the positive charge on carbonyl carbon of CH ₃ CHO decreases to a lesser extent due to one electron releasing (+I effect) CH ₃ group as compared to CH ₃ COCH ₃ (two electron releasing CH ₃ groups) and hence more reactive.	1
	(ii) because one of the -NH₂ is involved in resonance with carbonyl group and hence acquires positive charge.(b) (i)	1
	$Cl \xrightarrow{H_2} CHO$	1
	(ii) $R-CH_{2}-COOH \xrightarrow{\text{(i) } X_{2}/\text{Red phosphorus}} R-CH-COOH$ X $X = Cl, Br$	1
	(iii) H $C=O$ + C	1
	(o. a.i.) other salease reaction;	

Sr. No.	Name & Address	Sr. No.	Name & Address	
1	Dr. (Mrs.) Sangeeta Bhatia	9	Sh. Partha Sarathi Sarkar	
2	Dr. K.N. Uppadhya	10	Mr. K.M. Abdul Raheem	
3	Prof. R.D. Shukla	11	Mr. Akileswar Mishra	
4	Sh. S.K. Munjal	12	Sh. Maya George	
5	Sh. Rakesh Dhawan	13	Sh. Virendra Singh Phogat	
6	Sh. D.A. Mishra	14	Dr. (Mrs.) Sunita Ramrakhiani	
7	Sh. Deshbir Singh	15	Ms. Garima Bhutani	
8	Ms. Neeru Sofat			